DRAFTNOV 0 6 1990

PA Scoresheets

PRELIMINARY ASSESSMENT

DRAFT NOV 0 6 1990

CERCLIS IDENTIFICATION NUMBER

	1330	LNY	1098271912 A			
	SITE LOC	CATION & DEEL	LIONALY IDENTIFIED			
SITE NAME: Legal, common or descriptive name of site)		BY NYT 370010266			
The Mearl Corpor	ration		ργ μγ /			
STREET ADDRESS, ROUTE OF SPECIFIC LOCATION IDE	ENTIFIER ST					
city Peekskill NY		STATE 2	21P CODE TELEPHONE 0 566 (914) 137 - 2554			
coordinates: Latitude and Longitude 41:16:22 73:	56:11	<u> </u>	RANGE, and SECTION 32.20 Kat2			
OWNER A A	OWNER/OPERATOR	T				
mean Corpora	tion	OPERATOR Mean	l Corp			
OWNER ADDRESS 1057 LAWES SO	uth St	OPERATOR ADDRESS Lower South St				
com Peckskill		on Pecks	kell			
STATE ZIP CODE TELEPHONE 1914173	7-2554	I STATE. ZIP CO	DOS TELEPHONE 19141 137- 2554			
TYPE OF OWNERSHIP		OWNER	VOPERATOR NOTIFICATION ON FILE			
PRIVATE FEDERAL: Agency name	·	□ NONE				
COUNTY		CERCLA 103 C, UNCONTROLLED WASTE SITE				
☐ MUNICIPAL ☐ OTHER:						
O NOT SPECIFIED		RCRA 3001 DATE:	8/14/80 AS NY F3700/0266			
	·	. *				
SITE STATUS	YEARS OF O	PPERATION	APPROXIMATE SIZE OF SITE			
(X) ACTIVE	BEGINNING YEAR:	1955				
☐ INACTIVE	ENDING YEAR:	resent	20 acres			
UNKNOWN	UNKNOWN					

			TE EVALUATION	er er er er er er	est, e	
AGENCY / ORGANIZATION	' NUS Co	rogration	Regio	nTT		
NVESTIGATOR	aren S		0			
CONTACT ?		rochu			'' , - 1.2.	
DDRESS EP			4			r : i
(908)		,				•
ATE (0/28)	191					······································

Site Name: Means Corporation 2

Date: 6/28/91

GENERAL INFORMATION

5	ite Description and	Operational History:			<u> </u>
1		3			
		•			•
		,			
					,
			•		·
				•	
		• '			
					· · · · · · · · · · · · · · · · · · ·
ļ					
		-			
l					•
			•		
					·
L					

bable Contaminants of vious investigations; analytical	ical data)					
.		mg to a				
	ي المرابع	lo			£	
A CANADA				م ا		
	•	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	. 2	. S + 4.	÷	
			e CA jez	i week	17/2	
	,					
			·			

Site Name: Meaul Conferation 3 Date: 6/2/8/91

GENERAL INFORMATION (continued)

iite Sketch:
Show all pertinent features; indicate sources and closest targets)
, mulcate sources and closest targets)
South Street Center
South Street [CENTER]
FENCE FENCE

Site Name: Mearl Conforation 4
Date: 4/20/91

GENERAL INFORMATION (continued)

Source Descriptions: Mearl Corporation generates approximately 5000 on it only of waste cross solvent on year. This waste solvent also stored in 5000 bailors steel undersand tark. The store also also much a flarmone to storage also where apprenimately 500 division of includified storage also where apprenimately are stored in two 375 gallon above ground storage tanks

Waste Characteristics (WC) Calculations:

(See PA Table 1, page 5) Work Quantities of the 4 swalls on site:

2: 5000 gauon under ground Storge tanks = 10,000 - 500 = 20

2; 275 gallon above ground Storage tanks = 550 - 500 = 10

50; 55 gallon drumo = 50 - 10 = 5

50:55 gallen daums = 50 + 10 = 5

WQ=40

PA TABLE 1: WASTE CHARACTERISTICS (WC) SCORES

PA Table 1a: WC Scores for Single Source Sites and Formulas for Multiple Source Sites

T		SINGLE	SOURCE SITES (assigned WC	scores)	MULTIPLE SOURCE SITES
E R	SOURCE TYPE	WC = 18	WC = 32	WC = 100	Formula for Assigning Source WQ Values
CONST-1-DENT	N/A	≤100 lbs	>100 to 10,000 lbs	>10,000 lbs	/bs + 1
VASTEST-REAM	N/A	≤500,000 lbs	> 500,000 to 50 million lbs	>50 million lbs	lbs + 5,000
	Landfill	≤6.75 million ft ³ ≤250,000 yd ³	> 6.75 million ft ² to 675 million ft ³ > 250,000 to 25 million yd ³	>675 million ft ³ >25 million yd ³	ft 67,500 yd 2,500
v	Surface impoundment	≤8,750 ft² ≤250 yd²	>6,750 ft ³ to 675,000 ft ³ >250 to 25,000 yd ³	> 675,000 ft ² > 25,000 yd ²	ft ³ + 67.5 yd ³ + 2.5
0	Drums	≤1,000 drums	>1,000 to 100,000 drums	>100,000 drums	drums + 10
U M E	Tanks and non- drum containers	≤50,000 gallons	>50,000 to 5 million gallons	>5 million gallons	gallons + 500
	Contaminated soil	≤6.75 million ft ³ ≤250,000 yd ³	>6.75 million ft ³ to 675 million ft ³ >250,000 to 25 million yd ³	>675 million ft ³ >25 million yd ³	$ft^3 + 67,500$ $yd^3 + 2,500$
	Pile	≤6,750 ft³ ≤250 yd³	>6,750 ft ³ to 675,000 ft ³ >250 to 25,000 yd ³	> 675,000 ft ² > 25,000 yd ³	$ft^2 + 67.5$ $yd^3 + 2.5$
	Landfill	≤340,000 ft² ≤7.8 acres	>340,000 to 34 million ft ² >7.8 to 780 scres	>34 million ft ² >780 acres	ft ² + 3,400 acres + 0.078
A	Surface impoundment	≤1,300 ft ¹ ≤0.029 ecres	>1,300 to 130,000 ft ² >0.029 to 2.9 scres	>130,000 ft ² >2.9 acres	ft² + 13 acres + 0.00029
R E A	Contaminated soil	≤3.4 million ft ³ ≤78 acres	>3.4 million to 340 million ft ² >78 to 7,800 acres	>340 million ft ² >7,800 acres	ft ² + 34,000 acres + 0.78
	Pile*	≤1,300 ft² ≤0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 scree	>130,000 ft ² >2.9 acres	ft ² + 13 acres + 0.00029
	Land treatment	≤27,000 ft² ≤0.62 acres	>27,000 to 2,7 million ft ² >0.62 to 62 acres	>2.7 million ft ² >62 acres	ft² + 270 acres + 0.0062

¹ ton = 2,000 lbs = 1 yd^3 = 4 drums = 200 gallons

PA Table 1b: WC Scores for Multiple Source Sites

WQ Total	WC Sours
>0 to 100	18
>100 to 10,000	32
> 10,000	100

^{*} Use area of land surface under pile, not surface area of pile.

Site Name: Ment Corporation 6
Date: 6/28/91

GROUND WATER PATHWAY **GROUND WATER USE DESCRIPTION**

(Provide generalized stratigraphy; information	miles of the Site: on aquifers, municipal, and or private well	(s)	
·			
	,		
•			
•			
•	i	·	
,			
		•	

Show calculations of	ground water o	Irinking wat	er populations:			
	The second second					
						•
		o.				-
			•			•
		7		·		

DRAFT NOV 0 6 1990 GROUND WATER PATHWAY CRITERIA LIST

Site Name: Mearl Corporation
Date: 6/20/91

This chart provides guidelines to assist you in hypothesizing the presence of a suspected release and identifying primary targets. It is expected that not all of this information will be available during the PA. Also, these criteria are not all-inclusive; list any other criteria you use to hypothesize a suspected release or to identify primary targets. This chart will record your professional judgment in evaluating these factors.

The "Suspected Release" section of the chart guides you through evaluation of some site, source, and pathway conditions to help hypothesize whether a release from the site is likely. If a release is suspected, use the "Primary Targets" section to guide you through evaluation of some conditions that will help identify targets likely to be exposed to hazardous substances. You may use this section of the chart more than once, depending on the number of targets you feel may be considered "primary." In the "Primary Targets" section on this sheet, record the responses for the well that you feel has the highest probability of being exposed to hazardous substances.

Check the boxes to indicate a "yes", "no", or "unknown" answer to each question. If you check the "Suspected Release" box as "yes", make sure that you assign a Likelihood of Release value of 550 for the pathway.

	GROUND WATER PATHWAY								
<u>.</u>			SUSPECTED RELEASE				PRIMARY TARGETS		
¥ •	N 0	DEMC 0 & C	•	ř	N o	Acres			
ر		Ø	Are sources poorly contained?	B		<u></u>	Is any drinking-water well nearby?		
a	-		is the source a type likely to contribute to ground water contemination (e.g., wet lagoon)?		0	ø	Is any nearby drinking-water well closed?		
	12		is waste quantity particularly large?	0		œ	Has foul-tasting or foul-smelling water been reported by any nearby drinking-water users?		
	-	₽	Is precipitation heavy and infiltration rate high?	a		Q	Do any nearby wells have a large drawdown or high production rate?		
			Is the site located in an area of karst terrain?	٥		a /	Are drinking-water wells located between the site and other wells that are suspected to be exposed to hazardous substances?		
	ष्ट		Is the subsurface highly permeable or conductive?	o ⁄			Does any circumstantial evidence of ground water or drinking water contamination exist?		
	Ø		Is drinking water drawn from a shallow aquifer?			o ´	Does any drinking-water well warrant sampling?		
⊴∕			Are suspected contaminants highly mobile in ground water?	_			Other criteria?		
Ø	ď		Does any circumstantial evidence of ground water or drinking water contamination exist?	1 2			PRIMARY TARGET(S) IDENTIFIED?		
	σ,		Other criteria?						
☑	œ′		SUSPECTED RELEASE?				•		

		Other criterie? SUSPECTED RELEASE?			•		
C	Summarize the Due to the Contact Thus	anaulitical da initiation contributing	ta, a rel site are to grown	lase to gradus of water co	ned water hi mobile in on tanina	ead and chkroform as been docum n water tion	ent
	Summarize the TWO U and o The	rationale for Primary Targets (att sells wil local townspadient	ech en additional pag ted app of grown	oximately dwater f	1 3250 fe low dured	4,000 ex southwe tion of	Ke

DRAFT NOV 06 1990

Site Name: Meal Corporation 8
Date: 6/28/91

GROUND WATER PATHWAY SCORESHEET

	Pathway Characteristics			1
	Do you suspect a release (see Ground Water Pathway Criteria List, page 7)? Is the site located in karst terrain?	Yes	X No	
	Depth to aquifer:	Yes	No Z	
	Distance to the nearest drinking-water well:		12-17 ft 3,250 ft	
		A	В	1
LI	KELIHOOD OF RELEASE	Suspected Release	No Suspected Release	Referenc
1.	SUSPECTED RELEASE: If you suspect a release to ground water (see page 7), assign a score of 550, and use only column A for this pathway.	550 550		2.3.9.1
2.	NO SUSPECTED RELEASE: If you do not suspect a release to ground water, and the site is in karst terrain or the depth to aquifer is 70 feet or less, assign a score of 500; otherwise, assign a score of 340. Use only column B for this pathway.		(500 w 340)	<u> </u>
T	LR =	550	·	
3.	PRIMARY TARGET POPULATION: Determine the number of people served by drinking water from wells that you suspect have been exposed to hazardous substances from the site (see Ground Water Pathway Criteria List, page 7).	80		์ 21
4.	SECONDARY TARGET POPULATION: Determine the number of people served by drinking water from wells that you do NOT suspect have been exposed to hazardous substances from the site, and assign the total population score from PA Table 2.			<u> </u>
	Are any wells part of a blended system? Yes No X If yes, attach a page to show apportionment calculations.	5		27.2
5.	NEAREST WELL: If you have identified any Primary Targets for ground water, assign a score of 50; otherwise, assign the highest Nearest Well score from PA Table 2. If no drinking-water wells exist within 4 miles, assign a score of zero.	50.20,18,9,6,3,2, w 01	(20,18,9.5,3;2, ar O)	21 2º
6.	WELLHEAD PROTECTION AREA (WHPA): Assign a score of 20 if any portion of	[20, 5, er 0]	(20. S. as 0)	0119
	a designated WHPA is within % mile of the site; assign 5 if from % to 4 miles.	0	·	
7.	RESOURCES: A score of 5 is assigned.	.a 5	មេ 5	
w	T =	140		
		(100 32)	*******	
.	A. If you have identified any Primary Targets for ground water, assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part 8 of this factor.	32		
	If you have NOT identified any Primary Targets for ground water, assign the waste characteristics score calculated on page 4.	(100.52, er 10)	[100,32, @ 18)	
	WC =	32		

GROUND WATER PATHWAY SCORE:

LR x T x WC

30

PA TABLE 2: VALUES FOR SECONDARY GROUND WATER TARGET POPULATIONS

PA Table 2a: Non-Karst Aquifers

		Nearest			Por	ulation Se	rved by V	lelis Withi	n Distance	Category			
Distance from Site	Population	Well (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	Population Value
O to ¼ mile		20	1:	2	5	16	52	163	521	1,633	5,214	16,325	6
> % to % mile		18	1	1	. 3	10	32	101	323	1,012	3,233	10,121	٥
> % to 1 mile		. 9	1	1	2	5	17	52	167	522	1,668	5,224	0
>1 to 2 miles	215	⑤	1	1	1	3	9	29	94	294	939	2,938	3
>2 to 3 miles	70	3	1	1	0	2	7	21	68	212	6.78	2,122	_/_
>3 to 4 miles	120	2	1	1	1	0	4	13	42	131	417	1,306	_/_
	Nearest Well =	5								•	9	core =	5

PA Table 2b: Karst Aquifers

		Nearest						lets Ville	n Distance	Catagon			<u> </u>
Distance from Site	Population	Well (use 20 for karst)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 ta 300,000	Population Value
O to % mile		20	,	2	5	16	52	163	521	1,633	5,214	16,325	
> % to % mile		20	1	1	3	10	32	101	323	1,012	3,233	10,121	
> 1/2 to 1 mile		20	1	1	3	8	26	82	261	816	2,607	8,162	
>1 to 2 miles		20	1	1	3	8	26	82	261	816	2,607	8,162	
>2 to 3 miles		20	1	1	3	8	26	82	261	816	2,607	8,162	
>3 to 4 miles		20	1	1	3	8	26	82	261	816	2,607	8,162	
Nearest Well =Score =													

C)

NOV A 2 1000

Site Name: Mearl Corporation 10
Date: 6/20/91

404 0.9 (330	SURFACE WATER PATHWAY MIGRATION ROUTE SKETCH	·
Provide a Sketch of the Surface V	Vater Migration Route:	
(include runoff route, probable point of	entry, 15-mile target distance limit, intakes, fisheries, and	sensitive environments)
		·
	•	
	•	
		· · · · · · · · · · · · · · · · · · ·
		- Profiler to the second
The second secon		
[4년] 		
	,	
•		

DKATI NOV 0 6 1990 SURFACE WATER PATHWAY CRITERIA LIST

Site Name: Meal Corp Date: (1/20)91

This chart provides guidelines to assist you in hypothesizing the presence of a suspected release and identifying primary targets. It is expected that not all of this information will be available during the PA. Also, these criteria are not all-inclusive; list any other criteria you use to hypothesize a suspected release or to identify primary targets. This chart will record your professional judgment in evaluating these factors.

The "Suspected Release" section of the chart guides you through evaluation of some site, source, and pathway conditions to help hypothesize whether a release from the site is likely. If a release is suspected, use the "Primary Targets" section to guide you through evaluation of some conditions that will help identify targets likely to be exposed to hazardous substances. You may use this section of the chart more than once, depending on the number of targets you feel may be considered "primary." In the "Primary Targets" section on this sheet, record the responses for the target that you feel has the highest probability of being exposed to hazardous substances.

Check the boxes to indicate a "yes", "no", or "unknown" answer to each question. If you check the "Suspected Release" box as "yes", make sure that you assign a Likelihood of Release value of 550 for the pathway.

			CLIDEACE WA	TED 0	A = 1		
			SURFACE WA	IEK P	ATHV	VAY	
Y	N	u	SUSPECTED RELEASE				PRIMARY TARGETS
:	<i>'</i>	2{03K3C		•	N N	⊃CNE0≸E	
¥	⁻ /		is surface water nearby?	а	Œ		is any target nearby? If yes:
	Œ		Is waste quantity perticularly large?				☐ Drinking-weter intake
		Œ	is the drainage area large?				☐ Fishery
	<u> </u>	Ø	Is precipitation heavy or infiltration rate low?				☐ Sensitive environment
	s /		Are sources poorly contained or prone to runoff or flooding?	۵		12	Has an intake, fishery, or recreational area been closed?
	ď		is a runoff route well defined (e.g., ditch or channel leading to surface water)?	0	120	. 🗆	is there any circumstantial evidence of surface water contamination at or downstream of a
		. 52/	is vegetation stressed along the probable runoff path?	a			Does any target warrant sampling? If yes:
4	□ ′		Are suspected contaminants highly persistent in surface water?	Part			Drinking-water intake
	٧	Ø	Are sediments/water unnaturally discolored?				Fishery
			Is wildlife unnaturally absent?		_		☐ Sensitive environment
	D2		Has deposition of waste into surface water been; observed?				PRIMARY INTAKE(S) IDENTIFIED?
			is ground water discharge to surface water likely?	l .		,	•
			is there any circumstantial evidence of surface water contemination?			•	PRIMARY FISHERY IDENTIFIED? PRIMARY SENSITIVE ENVIRONMENT(S)
		•	Other cultural?				IDENTIFIED?
	Œ	,	SUSPECTED RELEASE?	170			• . :
Sum	marize	the re	stionale for suspected release (attach an additional page				

Summarize the rationale for suspected release (attach an additional page if necessary):

There has been no spills or releases attributed to the article additionally, there are no overland pathway to surface waters.

Summarize the rationale for Primary Targets (attach an additional page if necessary): There is no primary targets as there is no suspected to account on observed release to surface water the article water may attorn pathway from the site due to the topography of the site area and whanned harriers.

NOV 0 6 1990

	LIKELIHOOD OF RELEASE AND D		T SCORESH	EET	
	Do you suspect a release (see Surface Water Pa Distance to surface water: Flood Frequency: What is the downstream distance to the neares	it drinking-water intake? <i>N</i>	A miles /	No X ft 750 yrs	
	* NOTE: Unknown duchange	itive environment? \$10.5 m	A	8	
LIK	ELIHOOD OF RELEASE	ville criek_	Suspected Release	No Suspected Release	References
1.	SUSPECTED RELEASE: If you suspect a release to sur assign a score of 550, and use only column A for this p	face water (see page 11), pathway.	(580)		
	Site in annual or 10-yr floodplain Site in 100-yr floodplain Site in 500-yr floodplain	sign a score of 500; other-		(500,400,300 or 100)	8
DR	NKING WATER THREAT TARGETS	LR =	(550)	1500,400,300 as 1000.	
3.	Determine the water body types, flows (if applicable), a by all drinking-water intakes within the 15-mile target of drinking-water intakes within the target distance limit, and 5 at the bottom of this page (Resources only) and presented the second of the page (Resources only).	distance limit. If there are no assign a total Targets score			
	Intake Name Water Body Type	Flow People Served ctscts			
	PRIMARY TARGET POPULATION: If you suspect any cabove has been exposed to hazardous substances from Pathway Criteria List, page 11), list the intake name(s) score based on the number of people served.	the site (see Surface Water			
	SECONDARY TARGET POPULATION: Determine the S Population score from PA Table 3 based on the population intakes that you do NOT suspect have been expossubstances from the site.	ions using drinking-water			

No X

6. NEAREST INTAKE: If you have identified any Primary Targets for the drinking water threat (Factor 4), assign a score of 50; otherwise, assign the Nearest Intake score from PA Table 3. If no drinking-water intake exists within the 15-mile target distance limit, assign a score of zero.

If yes, attach a page to show apportionment calculations.

Are any intakes part of a blended system?

7. RESOURCES: A score of 5 is assigned.

(6) 10,27 5 5

(20,10,2,1, ar 0)

(50,20,10,2,1, or Of

T =

Site Name: Date:

PA TABLE 3: VALUES FOR SECONDARY SURFACE WATER TARGET POPULATIONS

Surface Water		Nearest			1	Population	Served b	y Intakes	Within Flo	w Catego	Y			
Body Flow		Intake	1	31	101	301	1,001	3,001	10,001	30,001	100,001	300,001	1,000,001	
Characteristics (see PA Table 4)	Population	(choose highest)	to 30	to 100	10 300	to 1,000	to	to	to	to	to	to	10	Population
(300) A (000 4)	, openation	ingilest	30	100	300	7,000	3,000	10,000	30,000	100,000	300,000	1,000,000	3,000,000	Value
<10 cfs		20	2	5	16	52	163	521	1,633	5,214	16,325	52,136	163,246	
10 to 100 cfs	<u></u>	2	1	1	2	5	16	52	163	521	1,633	5,214	16,325	.
>100 to 1,000 cfs	 -	1	0	0	1	1	2	5	16	52	163	521	1,633	
>1,000 to 10,000 cfs		0	0	0	0	0	1	1	2	5	16	52	163	
> 10,000 cfs or Great Lakes		0	0	0	0	0	0 -	0	1	1	2	5	16	
3-mile Mixing Zone		10	1	3	8	26	82	261	816	2,607	8,162	26,068	81,663	
Neare	est Intake =								_ -				core =	

PA TABLE 4: SURFACE WATER TYPE / FLOW CHARACTERISTICS WITH DILUTION WEIGHTS FOR SECONDARY SURFACE WATER SENSITIVE ENVIRONMENTS

	viece Water Body	Dilution
Water Body Type	OR Flow Characteristics	Weight
minimal stream	flow less than 10 cfs	1
small to moderate stream	flow 10 to 100 cfs	0.1
moderate to large stream	flow greater than 100 to 1,000 cfs	N/A
large stream to river	flow greater than 1,000 to 10,000 cfs	N/A
large river	flow greater than 10,000 cfs	N/A
3-mile mixing zone of quiet flowing streams or rivers	flow 10 cfs or greater	N/A
coastal tidal water (harbors, sounds, bays, etc.), ocean, or Great Lakes	N/A	N/A

NOV 06 1990

Site Name: Tiles & Co. F Date: 6/28/27/

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT SCORESHEET

	•		A	8	
LIK	ELIHOOD OF RELEASE		Suspected Release	No Suspected Release	Refe
Ente	r the Surface Water Likelihood of Release	score from page 12.	R == (550)	1900,400,300 - 100)	
нι	MAN FOOD CHAIN THREAT TARGE	ets .			
8.	Determine the water body types and flow the 15-mile target distance limit. If there distance limit, assign a Targets score of 0 proceed to page 15.	are no fisheries within the target			•
	Fishery Name	Water Body Type Flow	\neg \blacksquare		
	Hudson River	Large River 10,000 st	,		
		cf	100000000000000000000000000000000000000		
		1 <u></u> cf	3		
		cf	S		
		cf	S		
9.	PRIMARY FISHERIES: If you suspect any to hazardous substances from the site (se assign a score of 300 and do not evaluate	e Surface Water Criteria List, page 11).		
10	SECONDARY FISHERIES: If you have not	identified any Briman, Eleberia	[210,30,12 or 0]	(210,30,12, ar o)	
•••	assign a Secondary Fisheries score from the	he table below using the I OWEST flow			
	at any fishery within the 15-mile target di	stance limit.			
	Lowest Flow	Secondary Fisheries Seare		1	
	< 10 cfs	210		1	
	10 to 100 cfs	30			
	> 100 cfs, coastal tidal waters, oceans, or Great Lakes	12			

NOV 06 1990

Site Name: Mearl Confined 15

Date: 6/28/91

(continued)

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT SCORESHEET

						A	B	
LI	KELIHOOD OF RI	ELEASE				Suspected Release	No Suspected Release	References
Ent	er the Surface Wate	er Likelihood of Release	score from page 12.		LR =	(5 60)	(500,400,300 er 100)	
EI	NVIRONMENTAL	THREAT TARGETS					100	
11.	and 5). If there are	nents within the 15-mile e no sensitive environm	es (if applicable) for all sur a target distance limit (se tents within the 15-mile t ottom of this page, and p	e PA Table	e A			
	Environment Nam)e	Water Body Type	Flow				
	Hudson V.	1er-Wetlands						
	Habitat of	- Hudson Rive	None Lange Kiver	16 000	. 11			
					cfs			1/26,21
13.	Factor 13. List the	nas been exposed to haveria List, page 11), assign Primary Sensitive Env		the site (so not evaluate)	ee ate			
					l			
	100 cfs or less this factor:	Sensitive Environments , assign scores as follov	on surface water bodies ws, and do not evaluate p	with flows part B of	s of			
	Flow	Dilution Weight	Environment Type and \				İ	
		(PA Table 4)	(PA Tables 5 and 6)	70	tal			
	cfs	×		=		1		
	cfs	x		=				
	cfs	x		=		l.		
	cfs	x				İ		
	cfs	x					j	
•	-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				-	\sim 1	
				~	um =	[70 or 0]	{10 = 0	
	B. If NO Secondary	Sensitive Environment	ts are located on surface	water bodi	es	• · • • •		
	with flows of 1	00 cfs or less, assign a	score of 10.		- 1		10	
					T =	j	I_D	

Site Name: Meail Corp Date: 6/20/91

PA TABLE 5: SURFACE WATER AND AIR SENSITIVE ENVIRONMENTS VALUES

Sensitive Environment	Assigned Value
Critical habitat for Federally designated endangered or threatened species	100
Marine Sanctuary	100
National Park	•
Designated Federal Wilderness Area	
cologically important areas identified under the Coastal Zone Wilderness Act	
Sensitive Areas identified under the National Estuary Program or Near Coastal Water Program of the Clean Water Act	•
Critical Areas Identified under the Clean Lakes Program of the Clean Water Act (subareas in lakes or entire small lake	i m
Vational Monument	181
National Seashore Recreation Area	
National Lakeshore Recreation Area	
labitat known to be used by Federally designated or proposed endangered or threatened species	75
National Preserve	/3
National or State Wildlife Refuge	
Unit of Coastal Barrier Resources System	
Federal land designated for the protection of natural ecosystems	
Administratively Proposed Federal Wilderness Area	
Spawning areas critical for the maintenance of fish/shellfish species within a river system, bay or estuary	
Migratory pathways and feeding areas critical for the maintenance of anadromous fish species in a river system	
Terrestrial areas utilized by large or dense aggregations of vertebrate animals (semi-aquatic foragers) for breeding National river reach designated as recreational	
Habitat known to be used by State designated endangered or threatened species	50
Habitat known to be used by a species under review as to its Federal endangered or threatened status	30
Coastal Barrier (partially developed)	
Federally designated Scenic or Wild River	
State land designated for wildlife or game management	25
State designated Scenic or Wild River	23
State designated Natural Area	
Particular areas, relatively small in size, important to maintenance of unique biotic communities	
State designated areas for the protection/maintenance of aquatic life under the Clean Water Act	5
See PA Table 6 (Surfa	
Wetlands	

PA TABLE 6: SURFACE WATER WETLANDS FRONTAGE VALUES

Total Langth of Wetlands	
Less than 0.1 mile	0
0.1 to 1 mile	25
Greater than 1 to 2 miles	50
Greater than 2 to 3 miles	75
Greater than 3 to 4 miles	100
Greater than 4 to 8 miles	150
Greater than 8 to 12 miles	250
Greater than 12 to 16 miles	350
Greater than 16 to 20 miles	450
Greater than 20 miles	500

NOV 06 1990

Site Name: Mearl Corpe al., 17
Date: 6/28/91

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

	A	В
WASTE CHARACTERISTICS	Suspected Release	No Suspected Release
14. A. If you have identified ANY Primary Targets for surface water (pages 12, 14, or 15), assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part B of this factor.	(100 or 32)	
B. If you have NOT identified any Primary Targets for surface water, assign the waste characteristics score calculated on page 4.	[100,32, or 18]	(100.32. ar 18)
WC =		18

SURFACE WATER PATHWAY THREAT SCORES

Threat	Likelihood of Release (LR) Score (from page 12)	Targets (T) Score	Pathway Waste Characteristics (WC) Score (determined above)	Threat Score LR x T x WC / 82,500
Drinking Water				(subject to a maximum of 100)
	100	5.	18	
Human Food Chain				(subject to a meantum of 100)
	100	12	18	
Environmental				(maliprost to a measurem of 60)
	100	10	18	

SURFACE WATER PATHWAY SCORE (Drinking Water Threat + Human Food Chain Threat + Environmental Threat)

DRAFT NOV 0 6 1990 SOIL EXPOSURE PATHWAY CRITERIA LIST

Site Name: (Next Corp Date: 4/28/91

This chart provides guidelines to assist you in hypothesizing the presence of a resident population. It is expected that not all of this information will be available during the PA. Also, these criteria are not all-inclusive; list any other criteria you use to hypothesize resident populations. This chart will record your professional judgment in evaluating this factor.

Use the resident population section to guide you through evaluation of some site and source conditions that will help identify targets likely to be exposed to hazardous substances. You may use this section of the chart more than once, depending on the number of nearby people you feel may be considered part of a resident population. Record the responses for the resident population target that you feel has the highest probability of being exposed to hazardous substances.

Check the boxes to indicate a "yes", "no", or "unknown" answer to each question.

SOIL EXPOSURE PATHWAY							
SUSPECTED CONTAMINATION				RESIDENT POPULATION			
	Y *	N o	3€03K3C				
Surficial contamination is assumed.	55/			Are there residences, schools, or day care facilities on or within 200 feet of areas of suspected contamination?			
		a		Are residences, schools, or day care facilities located on adjacent land previously owned or leased by the site owner/operator?			
	0	œ		is there an overland migration route that might spread hazardous substances near residences, schools, or day care facilities?			
	٥	12		Are there any reports of adverse health effects from onsite or adjacent residents or students, exclusive of apparent drinking water or air contamination problems?			
	٥	Ø∕		Does any offsite property warrant sampling?			
		Ø		Other criteria?			
		Q /		RESIDENT POPULATION IDENTIFIED?			

Summarize the rationale for resident population (attach an addition	nal page if necessary):
	·
· ,	·
•	
-	

Site Name: Treat	Ĵ,	j. k	Arr.	1
------------------	----	------	------	---

SOIL EXPOSURE PATHWAY SCORESHEET	4/29/9	/	
Pathway Characteristics	· · · · · · · · · · · · · · · · · · ·		
Do any people live on or within 200 ft of areas of suspected contamination? Do any people attend school or day care on or within 200 ft of areas	Yes	× No	
of suspected contamination?	Yes	No X	
Is the facility active? Yes <u>\(\)</u> No If yes, estimate the number of wo	rkers: <u>215</u>		
	A	В	
LIKELIHOOD OF EXPOSURE	Suspected Contamination	No Suspected Contamination	Reference
1. SUSPECTED CONTAMINATION: Surficial contamination is assumed.	(550)		11070707108
A score of 550 is assigned.	550		
	<u> </u>		
RESIDENT POPULATION THREAT TARGETS			
2. RESIDENT POPULATION: Determine the number of people occupying residences			
or attending school or day care on or within 200 feet of areas of suspected			
contamination (see Soil Exposure Pathway Criteria List, page 18).	80		3
3. RESIDENT INDIVIDUAL: If you have identified any Resident Population (Factor 2),	(50 er 0)		-
assign a score of 50; otherwise, assign a score of 0.	50		_3
4. WORKERS: Assign a score from the following table based on the total number of	[15, 10, 5, or O]		
workers at the facility and nearby facilities with suspected contamination:			
Number of Workers Scare			
1 to 100 5			
101 to 1,000 10 15	10		4 20
5. TERRESTRIAL SENSITIVE ENVIRONMENTS: Assign a value from PA Table 7			-1100
for each terrestrial sensitive environment that is located on an area of suspected			
contamination: Terrestrial Sensitive Environment Type Value			
Terrestrial Sensitive Environment Type Value			
Sum =			3,27
6. RESOURCES: A score of 5 is assigned.	(N 5		<u> </u>
	5		
т =	145		
WASTE CHARACTERISTICS			
7. Assign the waste characteristics score calculated on page 4. WC =	(100, 32, = 18)		
	18		•
RESIDENT POPULATION THREAT SCORE: LE x T x WC	ladjest to a m	namium of 100)	
RESIDENT POPULATION THREAT SCORE: LE x T x WC 82.500	111		
NEARBY POPULATION THREAT SCORE:	; ;		
Assign a score of 2	. 2		
SOIL EXPOSURE PATHWAY SCORE:	(Anniest to a re-	sames of 100)	•
Resident Population Threat + Nearby Population Threat	1 //		

Site Name: Mead Coy 20 Date: 6/20/91

PA TABLE 7: SOIL EXPOSURE PATHWAY TERRESTRIAL SENSITIVE ENVIRONMENT VALUES

Terrestrial Sensitive Environment	Assigned Value
Terrestrial critical habitat for Federally designated endangered or threatened species	100
National Park	100
Designated Federal Wilderness Area	
National Monument	
Terrestrial habitat known to be used by Federally designated or proposed threatened or endangered species	75
National Preserve (terrestrial)	, ,
National or State terrestrial Wildlife Refuge	
Federal land designated for protection of natural ecosystems	
Administratively proposed Federal Wilderness Area	
Terrestrial areas utilized by large or dense aggregations of animals (vertebrate species) for breeding	
Terrestrial habitat used by State designated endangered or threatened species	50
Terrestrial habitat used by species under review for Federally designated endangered or threatened status	50 ,
State lands designated for wildlife or game management	25
State designated Natural Areas	23
Particular areas, relatively small in size, important to maintenance of unique biotic communities	

DRAFT NOV 0 6 1990 AIR PATHWAY CRITERIA LIST

Site Name: Meanl Corp
Date: 4/28/91

This chart provides guidelines to assist you in hypothesizing the presence of a suspected release. It is expected that not all of this information will be available during the PA. Also, these criteria are not all-inclusive; list any other criteria you use to hypothesize a suspected release. This chart will record your professional judgment in evaluating this factor.

The "Suspected Release" section of the chart guides you through evaluation of some conditions to help hypothesize whether a release from the site is likely. For the Air Pathway, if a release is suspected, "Primary Targets" are any residents, workers, students, or sensitive environments within % mile of the site.

Check the boxes to indicate a "yes", "no", or "unknown" answer to each question. If you check the "Suspected Release" box as "yes", make sure that you assign a Likelihood of Release value of 550 for the pathway.

			AIR PAT	ГНЖАУ
			SUSPECTED RELEASE	PRIMARY TARGETS
*	N _o	Dexco}c		
	٥	ū	Have odors been reported?	If you suspect a release to air, evaluate all populations and sensitive environments within ½ mile (including those onsite) as Primary Targets.
	œ		Has a release of hazardous substances to the air been directly observed?	
	12		Are there any reports of adverse health effects (e.g., headaches, nausea, dizziness) potentially resulting from migration of hazardous substances through the air?	
0	Q		is there any circumstantial evidence of an air release?	•
		,	Other criteria?	
	図		SUSPECTED RELEASE?	

•	ummarize the rationale for suspected release (attach an additional page if necessary):
İ	
L	

		Pathway Characteristics			i
	·	Do you suspect a release (see Air Pathway Criteria List, page 21)? Distance to the nearest individual:	Yes	on the ft	
			Α	В	
LI	KELIHO	OOD OF RELEASE	Suspected Release	No Suspected Release	References
1.	SUSPE score	CTED RELEASE: If you suspect a release to air (see page 21), assign a of 550, and use only column A for this pathway.	[\$60)°		
2.	NO SU	ISPECTED RELEASE: If you do not suspect a release to air, assign a of 500, and use only column B for this pathway.		500 500	
T/	ARGET	LR =		500	,
3.	to exp	RY TARGET POPULATION: Determine the number of people subject osure from a release of hazardous substances through the air (see Air ay Criteria List, page 21).			
4.	SECON within PA Tal	NDARY TARGET POPULATION: Determine the number of people the 4-mile target distance limit, and assign the total population score from ble 8.		43	1.4,
5.	pathw	EST INDIVIDUAL: If you have identified any Primary Targets for the air ay, assign a score of 50; otherwise, assign the highest Nearest Individual from PA Table 8.	(60,20,7,2.1, er 0)	20.7.2.1, or 01	4
•	(PA Ta	ARY SENSITIVE ENVIRONMENTS: Sum the sensitive environment values able 5) and wetland acreage values (PA Table 9) for environments subject osure from air hazardous substances (see Air Pathway Criteria List, page 21). Sensitive Environment Type Value Sum =			
7.	SECON the sco	NDARY SENSITIVE ENVIRONMENTS: Use PA Table 10 to determine ore for secondary sensitive environments.	2 ESA		3,20,2
8.	RESOL	JRCES: A score of 5 is assigned.	5	ស 5	
w	ASTE (T =		68	
9.	cha	ou have identified any Primary Targets for the air pathway, assign the waste tracteristics score calculated on page 4, or a score of 32, whichever is EATER; do not evaluate part B of this factor.	[10 0 or 32]		
	B. If y	ou have NOT identified any Primary Targets for the air pathway, assign the ste characteristics score calculated on page 4.	(100,52, or 16)	1 8	
		wc -		18	
ΑI	R PATI	HWAY SCORE:	(majout to a m	ssimin of 100)	

PA TABLE 8: VALUES FOR SECONDARY AIR TARGET POPULATIONS

		Nearest					opulation	Within Di	stance Ca	(agory					<u> </u>
Distance from Site	Population	individual (choose highest)	7 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,001 to 3,000,000	Population
Onsite	* 295	20)	1	2	5	16	52	163	521	1,633	5,214	16,325	52,136	163,246	
>0 to % mile	30	20	1,	0	1	4	13	41	130	408	1,303	4,081	13,034	40,811	1
> X to X mile	1,722	2	0	0	1	1	3	9	28	88	282	882	2,815	8,815	9
> % to 1 mile	2,766	1	0	0	0	1	1	③	8	26	83	261	834	2,612	3
>1 to 2 miles	14,726	٥	. 0	0	0	0	1	1	3	(8,)	27	83	266	833	_8_
>2 to 3 miles	13,902	0	0	0	0	o	1	1	1	④	12	38	120	376	4
>3 to 4 miles	15,712	0	0	0	0	0	0	1	1	②	7	23	73	229	<u>a</u>
Nearest l	Individual =	20											S	core =	43

PA TABLE 9: AIR PATHWAY VALUES FOR WETLAND AREA

	ar siza ki 🚜 d
ess than 1 acre	0
to 50 acres	25
Greater than 50 to 100 acres	75
Freater than 100 to 150 acres	125
ireater then 150 to 200 acres	1:76
ireater than 200 to 300 acres	250
ireater than 300 to 400 acres	350
ireater than 400 to 500 acres	450
reater than 500 acres	500

PA TABLE 10: DISTANCE WEIGHTS AND CALCULATIONS FOR AIR PATHWAY SECONDARY SENSITIVE ENVIRONMENTS

Olstence	Objective of the Control of the Cont		Product
Onsite	0.10	x	A LINE WAY
		×	
		X	
0-1/4 mi	0.025	X	
		×	
		X	
1/4-1/2mi	0.0054	×	
		x	
		×	
7	none	Total Environments Score =	
		1/2 mule	

DRAFT NOV 0 6 1990

Site Name: Mearl Corp 24
Date: 6/26/91

SITE SCORE CALCULATION

	S	S²
GROUND WATER PATHWAY SCORE (S,,,):	30	900
SURFACE WATER PATHWAY SCORE (S,w):	0	0
SOIL EXPOSURE PATHWAY SCORE (S,):	19	361
AIR PATHWAY SCORE (S,):	7	49
SITE SCORE:	$\sqrt{\frac{S_{gw}^2 + S_{sw}^2 + S_{se}^2 + S_a^2}{4}} =$	18

6	Ė	^	^	84	ın.	46	811	Δ	71	_	
n	Œ	L	u	W	IN	ПE	NI	מנ	П	O	м

DEFERNAL TO RCRA us recommended.

SUMMARY

		YES	NO
1.	Is there a high possibility of a threat to nearby drinking water wells by migration of hazardous substances in ground water?	123	
	A. If yes, identify the wells recommended for sampling during the SI. Wells owned by H.B. Baker & Walter Borden		
	B. If yes, how many people are served by these threatened wells?		
2.	Are any of the following suspected to have been exposed to hazardous substances through surface water migration from the site?		
	A. Drinking water place	ä	
	B. Fishery		
	C. Sensitive environments wetland, critical habitat, others		
	D. If yes, identify the targets recommended for sampling during the Si.		,
3.	Do people reside or attend school or day care on or within 200 ft of any area of suspected contamination?		o /
4.	Are there public health concerns at this site that are not addressed by PA scoring considerations? If yes, explain:		